The Tire Stops Here

Pavement Friction Management to Reduce Accidents and Avoid Litigation

Stephen N. Goodman, Ph.D., P.Eng.

President

Goodman Pavement and Materials Engineering Inc.

Presentation Overview

- Canadian Roadway Friction "Policy"
- Vision Zero & Safe Systems Approach
- Federal Highway Administration
 - Continuous Pavement Friction Measurement
 - Minimum Investigatory Levels
- Municipal Context
- Surface Restoration Alternatives
- Summary & Questions

Canadian Roadway Friction & Texture "Policy"

- "We don't want to know" / "We'll get sued"
- "Human factors and speeding cause accidents"
- "No test equipment available"
- "No established thresholds"

"Vision Zero" & Safe Systems Approach

- "Vision Zero" acknowledges that even a single roadway death is too much
- Safe Systems Approach (SSA) recognizes:
 - Humans make mistakes; and
 - Mistakes should not automatically lead to injury or death.
- SSA should design and manage roadway infrastructure to:
 - Anticipate mistakes & keep the risk of a mistake low; and
 - Reduce the impact of crashes such that the human(s) are not seriously injured or killed.

One Countermeasure at a Time

28 Proven Safety Countermeasures that offer significant and measurable impacts to improving safety

• 28 strategies in 5 categories:

MAKING OUR

ROADS SAFER

- 1. Speed Management
- 2. Pedestrian/Cyclist
- 3. Roadway Departure
- 4. Intersections
- 5. Crosscutting

Safety Benefits: HFST can reduce crashes up to: 63% for injury crashes at ramps.²

> **48%** for injury crashes at horizontal curves.²

20% for total crashes at intersections.³

Proven Safety Countermeasures

Pavement Friction Management

- <u>Continuous</u> Pavement Friction Measurement (CPFM)
 - Sampling at 100mm allows complete evaluation of roadway
- Measure, Monitor & Maintain
 - Prevent roadway departures, pedestrian & intersection crashes
- Various surface treatments available to address low friction/texture

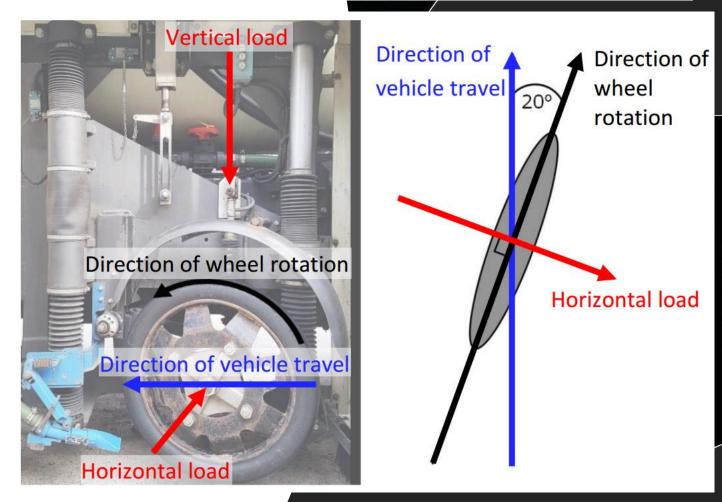
FHWA SA-23-006

- Developed Crash Modification Factors/Functions (CMFs/CMFx) to evaluate the effect of changes in friction on safety (and cost effectiveness of treatments); and
- 2) Established Investigatory Thresholds for friction based on road type and category
- Strong statistical association between friction and macrotexture & crash rates
- Reduction of up to 30% in total crashes with increase of 10 SFN40

CHARACTERIZING ROAD SAFETY PERFORMANCE USING PAVEMENT FRICTION

PUBLICATION NO. FHWA SA-23-006

U.S. Department of Transportation Federal Highway Administration

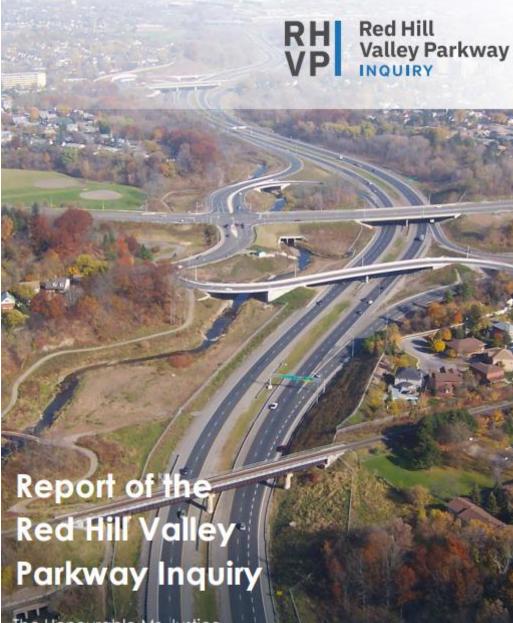

Table 13. Summary of the threshold analysis

Roadway Facility Type	Site Type	Suggested	Graphic Threshold	Approximate UK CSC Eq.	CS 228 ST	CS 228 LR
	Tangents	40	36 - 38	0.29 - 0.31	0.35	0.30
	Curves	45	42 - 44	0.34 - 0.36	0.45 - 0.50	
	Ramp Access	45	44 – 46	0.36 - 0.37		
Rural Multilane Roadways	Divided Tangents	50	48 - 50	0.39 - 0.41	0.35 - 0.40	0.30
	Undivided Tangents	50	48 - 50	0.39 - 0.41	0.40 - 0.45	0.35
	Curves	55	54 – 56	0.44 - 0.46	0.45 - 0.50	
	Intersections	55	54 - 56	0.44 - 0.46	0.45 - 0.55	0.40
Rural 2- lane, 2- way	Tangents	50	48 - 50	0.39 - 0.41	0.40 - 0.45	0.35
	Curves	55	54 - 56	0.44 - 0.46	0.50- 0.55	0.45
•	Intersections	60	54 - 56	0.44 - 0.46	0.45 - 0.55	0.40
	Divided Tangents	50	48 - 50	0.39 - 0.41		
	Undivided Tangents	50	48 - 50	0.39 - 0.41		
	Curves	50	48 - 50	0.39 - 0.41		
	Intersections	55	54 - 56	0.44 - 0.46		

What is SFN40?

- Sideway Force Number @ 40 mph (≈64 kph)
- Continuous friction measurement with SCRIM (Sideways-force Routine Investigation Machine)
 - Freely rotating measurement wheel at 20 degrees
 - Water spray
 - Collected at posted speed & corrected to 40 mph

Side-Force Coefficient = 100* Horizontal Load / Vertical Load


Project Level Testing

SARSYS

- T2Go Continuous Friction Device
- Fixed Slip of 20 degrees
- Walking speed with readings @ 30mm intervals
- Water backpack
- Integral GPS, Temp & Humidity
- Phone interface
- Road markings, crosswalks, pathways, intersections, indoors

The Honourable Mr. Justice Herman J. Wilton-Siegel Commissioner • RHVP & Linc = 19 km urban freeway in Hamilton, ON

- Opened in 2007 immediate concerns re. markings, lighting & slipperiness
- Seven (7) deaths btw 2012 & 2018
- RHVP Inquiry initiated in 2019
 - 2 volumes = 1,000 pages
 - "Friction" occurs 1,418 times in Volume 1 & 860 times in Volume 2
 - "relatively low friction levels a likely contributor to collisions"
 - "low friction levels made the roadway less forgiving to driver speed and error"
 - "geometric features contributed to increased friction demand"

- 1) Traffic safety is a shared responsibility between City departments
- 2) Adopt a comprehensive safety approach (MTO-style)
- 3) Develop a culture of collaboration and cooperation between departments
- 4) Enable information sharing between departments
- 5) Better and more consistent reporting to Council
- 6) Address issue re. consultant engagements & staff reports

C			Urger	nt Intervention	s	Planned Interventions		
ce ration	Panneau de Temporary Corrective Signage correctifs*	Micro Milling	Mechanized Patching	Diamond Grinding	Shot- blasting / Hydro- blasting	Wet Sweeping (1), Mechanical Broom (2), or Absorbant (3)	Milling and Overlay	Padding and Overlay
Surface Restora	535			и и и и и е е е е е е е е е е и и е е и и е е е и е е е е				Ļ
Bleeding								
Wear & Polishing	D-310-1 ou D-310-2							
Rutting and Deformation								
Crack Sealing	D-310-2						Cas extrême	
Debris (solids)	T-190					1 ou 2		
Debris (oils, etc.)	D-310-1 ou D-310-2					2 ou 3		
Excess Tack Coat						1 ou 2		
Inconsistent Texture								

Summary and Key Takeaways

- Cannot continue to keep our heads in the sand with respect to friction
 - Agencies adopting Vision Zero and SSA policies
 - FHWA & RHVP Inquiry have opened the door for litigation be proactive!!!
- Continuous friction measurement is the only approach to measure, monitor & maintain adequate friction
 - Network & Project level measurement options
- Once low friction is identified, numerous options are available for restoration

Questions?

Stephen Goodman, Ph.D., P.Eng.

Goodman Pavement and Materials Engineering Inc. 613-203-3248 StephenGoodman@goodmanpmeng.com

